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INEFFICIENCY OF RASH EQUILIBRIA: I

by

P. Dubey1 and 3. D. Rogavaki

1. Introduction

The main theme of this paper and Its sequel ([1) is that Nash

equilibria (N.E.) are generally Inefficient (in the Pareto sense). Sup-

pose that a game with n players Is given by n mapsFi S I SX... XS n Y i

and n maps

u :Y -'F9

where Si iIs the strategy set, Y I the outcome space, and u I the utility

function of the I hplayer. Thus the I thplayer gets the payoff

u I (s where)i- wbl'e (a %) and a f S denotes the strategy

chosen by the j thplayer. The S1I and Y1  are taken to be "S-manifolds"

(as defined In Section 2), for instance slmplices or manifolds, 2 and the

maps * and uIi are C 2. The general question Is: "to what extent

are the Nash equilibria of these gaves Pareto efficient or Inefficient?"

The focus of the present paper is the case where all the Ti

I The fiut-ewad author's work was supported by 0... grant MOWl4-?7-C-UUW
issued under Contract authority UK 047406.

2Throughout this paper, all manifolds are assumed to be C a-eenfolds.
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coincide with a fixed Y and the vth a fixed * this may be

thought of as corresponding to "pure public outcomes." We begin its

analysis in Section 2, assuming that y - S1 x ... x Sn and that # is

the identity map. Our main result (Theorem 2.4) states that if the space

of utilities satisfies a certain condition "T.C." given in Section 2, then

generically (for an open dense set of utilities): (a) the set of N.E.

Is finite and varies continuously, (b) if an N.E. is efficient, then at

least one player is on a "vertex" of his strategy set, (c) if an N.E. is

strong, then at most one player ts not on a vertex of his strategy set.

Note that (b) Implies generic inefficiency of N.E. if the strategy sets

are vertex-free (e.g. manifolds) or if vertices can a priori be ruled out

of N.E. in the given case. The result applies to the multi-matrix gaSes of Nash.

(Section 3). Here a vertex corresponds to a pure-strategy and, given the

special structure of payoff functions, (c) can be strengthoed to: if

an N.E. is strong, every player is using a pure strategy. These results

were obtained when S is a simplex in (21 and the present treatment is

based on the same ideas in a more general framework. it Is also shown that the

set of efficient strategies is contained In a union of submanifolds of Y

of codimension at least 1 + (N - n) where N is the dimension of Y.
In Section 4. we present a simple example of the resviq of Section

2. It Illustrates all of the general phenomena and the .w " ishes

to understand Theorem 2.4 without reading the proof is ercouraged to read

the definitions of Section 2 and then turn directly to Section 4.

In the final section, we discuss what happens for arbitrary •

When the strategy sets end the outcem apace open ubmanifold of Euclidean

space, It turns out that a certain inquality relating the auber of players,

the dimnsion of the strategy sets, and the dimnsln of the outcome space

guarantees that the conclueion of Theorems 2.4 hold for geetic •

: L i
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In Part I ([5]) we consider the "pure private outcomes" case, in
which the # are distinct and Y x .... Xn is the set of all reallo-

cations of privately-ovned comodities. The are subject to certain

constraints in the spirit of [4] (which also includes a survey of recent

articles on such "strategic market games"). The precise statement of in-

efficiency will be made in its place. Sere again there is a precursor

([3]), in which a particular example is worked out. but our approach is

significantly different from that of 13]. We show that for fixed *i ,

the set of strategies S1 x ... x S can be partitioned into E and I

Every point in E has the property that, for any choice of utilities, It

it is an N.E. then it is perforce efficient. I Is characterized by exactly

the same property with "efficient" replaced by "inefficient." Therefore

we call them "ultra-optimal" and "ultra-inoptimal" points. The analysis

turns on the sets E , I and on shoving that the set of N.E. of the

same u (u, ..., un) generically has a transversal intersection with

E.

2. The Main Theorem

The strategy sets which occur for many classes of games are not

manifolds. A standard example Is the simplex in 1n . To take this into

account, we define and prove our theorems for a class of topological spaces

which we call S-manifolds. It seems that most strategy sets are S-mtnifolds.

Since the proofs for 5-mnfolds will be reduced to the case of manifolds,

we first define our set-up for manifolds and Introduce S-emanifolds toward

the end. /

We consider Smes of the following type. There are n player

and the jth player has a strategy set S which is a manifold o 6.-

-s 0.I,0

. .... .. . ,
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dimension r(j) . Let k(J.) * r(J) . (Later
I Laej l be taken tobean -mnifold) Let C - 1 x .,. S ; it is d manifold of dimen-

ean N m k(n) . Let CI(X) be the Bausch space of functions u on
X all of vhose partial derivatives of order 0, 1 and 2 exist and are con-
tinuous and whose norm 11u,1 2 . given by

1jul12 - supIDu(x),
AEX

D

where Du ranges over all partial derivatives of u of order v 2 , Is

finite.

Let U be a Banach submanifold of C2(X) Thus U Is a classof utility functions and a game consists of an element ; a (u1, ..., un) CU n
that Is, a choice of utility function for each player. A choice of stra-
tegies j" (a1. *..,s n ) EX is aIso an outcome and the jth player's

payoff is given by us(s) .

1SuL:bria: Assume i, (u1, -.,un) E Un is fixed. Let T be a non-
empty subset of {, 2, ...,n) and for e E nS t , let ('J0') denote
the element of X obtained by replacing 81 by ea for I C T

1) A point i" C X Is called T-efficient If there t no point

aE a s, such that:tCT

ui(.Ii) _* ui(') for all I C T

l a'isJe) uj() for so" J E T

.(the coalition of players belonging to T cannot Pareto-.prove itself
if the other players remain fixed).

til -.
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2) A point C C X is a Nash equilibrium if it is T-efficient for

all subsets T consisting of one element.

3) A point a C X is efficient (or Pareto optimal) if it is T-

efficient for T a (1, 2, ... , n)

4) A point s C X is a strong Nash equilibrium If it .s T-efficient

for all subsets T c {l, ...,n)

5) Let N(u) , E(u) , S(u) denote the sets of Nash, efficient,

and strong Nash points in X respectively (with respect to the utilities

- 1 unu 0 (u,..-u u .

The Derivative Map: We are going to define a map which will be used in

the investigation of Nash and efficient points of a game. Lewas 2.2 gives

the precise connection.

With notation as before, let T* denote the cotangent bundle of

X and T*(x) the fiber of T* above x E X . Thus T*(x) is the to-

tangent space at x (the dual of the tangent apace) and if we choose local

coordinates (xi, ..., Nc) around x , then T*(x) can be identifl-.,

with FN . Each function u C C2 (X) defines a section Vu of T* ;

Vu is the gradient of u and in local coordinates (x1, ... ,XN) near a

point x C X , Vu - (au/ax,, ... , 3u/x3N)

Let T* be the n power of T* In other words, T* is then T;

vector bundle over X whose fiber at x C X Is T*(x) x ... x T*(x)

u-times
and In local coordinates we my view an element of this fiber as a matrix

with n rows and R columns.

Given i; (uL, ... u) £ U w , we obtain a section D(U) of T*

whose value at x C X we denote by D(.,x) . In local coordinates

(x1 , ... ,x) near z,

-~L
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OU Oul

D(ux) C TU*(X)

The map D(-,x) from n £ X to Th Is called the derivative p.

We vill always choose local coordinates (x3, ... , xN) which are

compatible with the product structure X - S1 x ... x S ; that is, we

always choose (x,, ... , xN) so that (Xl, ..., k) are local coordinates

for S1 , (xk(l)+l, .. xk(2)) are local coordinates for S2 9 etc.

Let S! be a submanifold of Sj for j 1 1, ..., n and put

nj, .t
x' - s~ xs; let d(J) - dim(SP, a- d(j), and let T*

jal

(resp. T'* ) be the cotangent bundle of X' (reasp. product of T'* with

itself n times). Every cotangent vector v C T*(x) defines, by restric-

tion, a cotangent vector in T'*(x) , for x E X' . To see this, note

that the tangent space T'(x) to x in X' is a subspace of the tangent

space T(x) to x in X and hence elements of the dual space of T(x)

(naely, cotangent vectors) restrict to give elements of the dual space

of T'(x) . We shall assume that d(j) 3 0 for all j

We define two subsets " and N" of Tn* as follows. Let
n

(xl, ... % Ia) be local coordinates for X' around a point x C ' , chosen

so that (x, 0... d(l)) are local coordinates for S ,

(Xd(1)+l, .. ,d(l)4d(2)) are local coordinates for S, etc. With

respect to .tbese coordinates, an element of T'e(z) Is represented as

a mtrix with n rows and a columns. Define:

9" ((V) C Ta" : V hat linearly dependent ras)

IN

.' z
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(Here (x,V) f Tn* mans that V is an element of the fiber Tn' repre-
n

sented as a matrix in local coordinates.) Define:

i-1 i

N" - ((x,V) C T;* V - 0 for 1 + d(L) < j _ d())
101 1-

where V denotes the (i,j)-entry of V . In other words, (x,V) E N"ii

if V has the form:

V0...0 n

d(l) d(2) d(n)

Define E' (resp. N' ) to..be the set of elements (x,V) C T* such.that:
n

1) xC X'

2) the restriction of V to Tn*(x) lies in E" (reasp. N" ).

It is obvious that N" is a closed subset of Tn* (which is itself a

manifold). It is also obvious that E" is closed in T* and this

can be checked as follows. Because T.* is a locally trivial

bundle, it will suffice to show that if {Am) is a sequence of n xa

matrices with linearly dependent rows such that lim An - A , then A

has linearly dependent rows. If An has linearly dependent rows, there

is a non-zero vector vm E i n  such that vmA. - 0 and, multiplying vU

by a scalar if necessary, we my assume that IlvmIl a 1 . Since the unit
sphere in in s coqwct, there Is a subsequence of the v. which converges

to a vector v ER n  such that Ievil alnd it is clear that vA 0

Nence A has dependent rows. 5'
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In the next lea, we somewhat pedantically prove some statements

that vii be needed to apply the transversal density theorem and ask the

reader for whom these statements are obvious to bear with us.

Lema 2.1: (1) N' Is a submanifold of T* of codimension N
n

(Ii) E' is a finite union of submanifolds of T* of codimension greatern

than or equal to N-n+l

(iii) E' n N' is a finite union of submanifolds of T* of codimensionn

greater than or equal to N+1+(a-n)

Proof: Because T* is a locally trivial bundle, every point x C X has
n

an open neighborhood V C X and local coordinates (xl, ..., xN) on V

such that the restriction of T* to V is isomorphic to V x Mat(nN)n
where Mat(n,N) denotes the set of matrices with n rows, N columns,

and real entries. Furthermore, we may choose the coordinates (xj, ...,x N)

so that (xk(il)+l• ...,xk(il)4d(t)) are local coordinates for S'I

It is clear that: 1) to prove that N' , E' , and E' n N' are unions

of submanifolds, it suffices to show that N" , E" , and N" n E" are;

and 2) dia(N') - dlm(N") + (N-a)n , dim(E') - dim(E") + (N-a)n , and

dim(N' f) E') - dln(N" n E") + (N-a)n where dim(E') and dinE' n N')

denotes the maximum dimension of the submanifolds whose union is E' ,

E' n N' , etc. Therefore we may as well assume that X - X' and that

a - N . Then (i) is obvious.

To prove (ii), it will suffice, In view of the local triviality of

a, to show that the set A of n x N matrices with linearly dependent

rows is a finite union of submanifolds of dimension < (n-l)(N+I) . Let

T be a proper subset of (1, 2, ...,n) and let AT be the subset of

Hat(n,N) of matrices A such that if A denotes the jth row of Ajt
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then the vectors 1Aj : j C T) are linearly independent and each Ak

for Lf T is dependent on the set (A : jET) . We show that AT  Is

a submanifold of Mat(n,N) and compute its dimension. Since A m UA_ T
T

this viii show that A is a finite union of submanifolds.

We may assume that T - {l, ...,t) without loss of generality.

Let St be the set of elements in Mat(t,N) with linearly dependent rows.

We have shown that St  is a proper closed subset and hence the set

(Mat(t,N) -St) x Nat(n-t, t)

is a manifold of dimension tN + (n-t)t . We construct an embedding 9

from (Mat(tN)-St) x Mat(n-t, t) onto AT as follows: for

B E (Mat(t,N) -S) with rows B *, ... , Bt and C - (Cij)E Nat(n-t, t) ,

let O(B,C) be the mstrix whose Ith  row is B for I < I < t and

th t

whose I h  row is I C iB for t < i < n . This shows that AT is

a manifold of dimension t, + (n-t)t and it is easy to see that the largest

of these dimensions (1 <_ t < n-l) is the case t - n-I , i.e., the largest

dimension is (N+l)(n-l), and it follows that E' is a finite union of

submanifolds of dimension less than or equal to N + (N4+)(n-l)

It remains to prove (Iii). Again by the local triviality of T "

and the above remarks, it is enough to show that the set £0 of n a U

matrices of the form

TMl r(2) r(n)

.. ~. I0 ... O
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with linearly independent rows is a finite union of submanifolds of dimen-

sion < N(n-1) - (N-n+l) . Let T be a proper subset of (1, ..., n) and

let Ar be the subset of A of matrices A with rows A such that

(A j E T) is a linearly independent set of matrices. We show that

OT is a submanifold of Mat(n,N) and compute its dimension; we may assume

that T - (1, ...,t) with t • n . Let % be the set of t-tuples of

row vectors of length N (A,, ..., At) such that the A are linearly

independent and A forms the jth row of some matrix in 0 , i.e.,

A has zeroes in the appropriate places. As before, 4 is a manifold.

Consider the map:

* x Mat(n-t, t) ,1 r(t+) X . 1 r(n)

defined as follows. Let (A1, ..., At) x (Cij) E x Mat(n-t, t) and

t
consider the row vectors I C A for i - 1, . n-t . Let vi bein ii J ""

the vector consisting of the k(t+i-1) + 1 to k(t+i) entries of the

t t
vector " C A ; if vi is zero, then the vector Ci A qualifies

jai I j-l j j

as the (i+t)th  row of a matrix in fn . Define *((A,, ... , A) X (Cij))

- (V1 , v2, .... vnt)__ On the other hand, we have a map from *-l((0, .... 0))

to 'T : send (A,, ... ,.A) x (Cej) E #j 1 ((0, ... , 0)) to the matrix

whose first t rows are A1, ... , At and whose Ith row for t i I n
t 

.
is j C(it)jAJ . If we show that *-l((0, ...,0)) is a manifold, it

will follow that OT is, and to do this, we need only check that * is

transverse to (0, ...,o) . We omit the straightforward verification.

It also follows that SiT Is a manifold and since

the codimension of -l(, ... , 0) in 3 Het(n-t, t) is the same as that



if (0, , ) in Mk(t+l) , k(n)

dim 1 - (t-l)N + (n-t)t - -t 2 + (N+n)t - N

Here I < t < n-I and the maximum value of this dimension occurs for

t - n-i and we get (n-2)N + (n-i) - N(n-l) - (N-n+l) . This proves (iii).

The transversal density theorem will be applied to the map

D: Un' X T*
n

(u, x) I- D( x).

We recall the definition of transversality. Let f : X - Y be a differ-

entiable map between two manifolds X and Y and let W C Y be a sub-

manifold. Let T xX (resp. T xY , T xW ) be the tangent space to x

in X (resp. Y , W) for x E X (resp. Y , W) . Then * is said

to be transverse to W at a point x E X if either *(x) f W or

*(x) E W and T (x)Y T ON)W + df(TY) . This is ritten as 0xW

If 0 is transverse to W for all x £ X , we say that f is trans-

verse to W and write *W . If OW , then C-I(W) is a submanifold

of X ([ i]).

Lemma 2.2: Let X a ' x x S' as before. Suppose that the jth
Sn1

player is constrained to pick his strategy from S; and let

u (u1 , ...,un ) C Un  be a choice of utilities. In other words, utilities

come from U but the strategy sets are reduced to S. Then

(1) If x E X' is a Nash equilibrium for this game, then D( ,x) E N'

(ii) If x E X' is an efficient point for this game, then D(' ,x) C E'

(this condition was used by Smale 16]).

(i1) If x C X' and x C N(Vu) , the x is a Nash equilibrium for this

restricted game.

.... . _ _ _ _ _ __liII .

~~ 1
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Proof: (1) If x C X' Is a Nash equilibrium, it follows that for all

I , the point x Is a local maximum for uiwith respect to the SI

variables, hence the corresponding partial derivatives must vanish.

(11) If the projection of the rows of D(-,x) onto T**(x) are
n

linearly Independent, then there is a vector v C So such that D' (u,x)v

has positive entries, where D'(u,x) denotes the projection of D(,x)

onto T'*(x) .Then v defines a direction in X1 alongn

which each u is Increasing. Hence x is not an

efficient point for this game. (Ili) is clear.

We will say that the space U C C2(X) satisfies condition T.C.

(transversality condition) if for all u C U , x 6 X , and v C T*(x)

there exists a path E(t) in U such that C(O) - u and

dt

DU xX T*n

Is transverse to all submenifolds of T* . it also implies that the mapn

D': n x V' - T;* for V' as before is transverse to all submanifolds

of TI*
n
Now we define S-manifolds. Let M4 be an n-dimensional manifold.

If X Is a subset of M , the interior 10 of X Is the set of points

x C X such that there exists an open neighborhood of x In M contained

In X . A subset X of M Is called an S-manifold if

1) 'g - (where 10 - the closure of to in M

(11) X - le is a union U KJ where XJIs a submanifold of M
jul

and XJIs a submanifold with boundary.

The Xi Qj 0, 1, ...,a) are called components of X
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If X is a closed subset of a sanifold M , we define C2 (X) to

be the set of restrictions to X of C2-functiona f with bounded norm

on some open neighborhood of X in M end identify two functions on an

open neighborhood of X if they agree on X . Set

1 2112. suplDf(x)I
xEX

D

where Df ranges over all partial derivatives of f of order < 2

Using the Whitney extension theorem (1 1]) and an argument involving par-

titions of unity, we can choose one open neighborhood R of X in M

such that every f E C 2 (X) is the restriction to X of an element of

C2(R) . Let U be a submanifold of C2 ( ) with the norm II 112 defined

above and let 11 112 be the usual C2-norm on C2(j) . It is clear that

,If112 < lIfl12  for all f C C2 (k) and so a dense subset of C2(j) in

the norm 11 112 is, a fortiori, dense under the norm II II2

Now assume that the strategy sets S are S-manifolds (defined

as subsets of a manifold H of dimension r(j) ) with open neighborhoods

S CM as in the previous paragraph. Let X - S1 x ... x Sn , and let

k i1s ... xk- C2(k) the space of C2-functions under the norm

IJ-U2, as in the previous paragraph. Let S be a component of S
iI  in

and set X a S 1  x Sn where a-(i1 ,...,i) ; let A be the

set of such at for which dlm(S ) • 0 for all j . Let N' and El
.1 a CL

be the subsets of associated to X , where is the nth-power

of the cotangent bundle of k (these sets are defined as in Lama 1 and

the paragraph preceding it).

Ii

__________________________"lll~nl UN I/l/innIni.,u
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Theorem 2.3: Assume that U satisfies T.C. with respect to the map

•:n x n " Then there is a dense set UO cU n  (with respect to

the norm II 112) such that for all C U0

(i) D(-u)(x) n (EnN ) -s for all aCAa a
(ii) If X Is compact, then a U0  satisfying (1) may be chosen

open and dense and such that for all Z C U0  D(u)(X) n N'

is finite for all • and codi(D( )(1 )  1 + N-n.

Here DOu)(X) denotes the image of X under the map D(G) - D(u,x)

Proof: We apply the transversal density theorem to the derivative map

Un x k - * . Since U satisfies T.C., this theorem implies that

there Is a dense set U0cU n  such that for all - (u1 , ...,un) C Un
0o

the map

D(CI) : X.

1i transverse to N' for a C A and each of the finite number of submani-

folds whose union is N n E' . From Lema 2.1 we have
a a

(a) dim(X) - codim(Na) for a £ A

(b) dimX) codmisllE ) for a C A

where codim(N' l E') denotes the smallest of the codimensions of the sub-

manifolds whose union is N E' * Part (i) follow Immediately from (b)

and (a) implies that the Nash set N() , which Is contained In

D(u)1'( U %') to a sero-dimensional submanifold of X . In particular,&CA"

If k is compact, D•iiY1C U N') Is a finite set.
,EA a

Suppose that X Is compact. Since each JJ Is a manifold with
I

boundary, we can, by considering the boundary components of 8 separately,

I-

i °a



Here N' and V denote the closures of N' and E' Furthermore,
a a

the Implicit function theorem and the tranaversality property of D(u)

for u c U0  show that for i' sufficiently close to i , the set

D(u')'I(U N') is also finite and varies continuously for U' near
csEA a'

This also shows that for il close to , D6?')(X) fl (IW', f ) - * for
a a

hence we may assume U0 open.all * 6 A A Furthermore, E," Is closed in 1n* for all *%#A and so, by

considering the restriction of D( u ) to the X. , the transversal density

theorem shows that there is an open set U I Un such that D( U ) is transverse

to E, for all at cA. Replacing U0  by Upf U1 proves (ii).

We reformulate Theorem 2.3 in game-theoretic language. Let S be

the strategy set of the jth player; since it Is an S-manifold,

0 a i ) I h r th .
S M S U (US) where the S are manifolds. A point x E S ill
j j imi J j j

be called a vertex if it is a zero-dimensional component of S under a

minimal such decomposition of Si , i.e., if x - S for some I and m
is minimal in the above decomposition.

Theorem 2.4: Assume that U satisfies T.C. and that X is compact.

Then there is an open dense set UO C U such that for all uE U0 :

1) N(-u) is a finite set which varies continuously for C U0f

2) If x - (al E X and xE I(u) n E) , then some

S is a vertex. In particular, if the S have no vertices,

N(u) nl E(u) -

3) If x E S() n E() , then at most one S Is not a vertex.

4) Et) Is a finite union of "submanifolds" of X of codimension

at least I + (N-n) . (Here "submnifold" of X means the

intersection of X with a submanifold of )

: _ n m m _ . ...

~d
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Proof: This is essentially a restatement of Theorem 3 together with

some remarks made in the proof. Let mc (1, ... ,n be a subset and look

at the finite nimber of "subgames" among the players in M obtained by

placing all other players on one of their vertices. If card(M) Y 1 our

argument shown that there Is an open dense set UN such that if -£ UN

and x isa Rash Equilibrimu of the subgpme u , then it is not H-efficient

unless one of the players in N is also at a vertex. Take U0  to be

the intersectiou of all such UN .

Finally, we remark that condition T.C. is satisfied if U - C2(X)

or if U is any linear subspace of C (X) such that for all x E X ,

there exist 5 functions In U which provide local coordinates near x

For example, If X Cln , then a linear subspace U satisfies T.C. if

it contains the linear functions on Rn . Furthermore, there are many

well-known theorems which guarantee the existence of Nash equilibria for

various open classes of functions, e.g. functions satisfying convexity

conditions, etc.

3. Multi-matrix Games

These were introduced by Hash in [5). Each player I has a finite

set K of "pure strategies" which we number for convenience as follows:

K1 - (k(i-l)+, ..., k(i))

Kn n (k(n-l) + 1, ... ,k(n).

Kech K Is now enlarged to a met I of "mixed strategies," which are

1 1 t
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simply probability distributions on .

-, (x C R c : KI X j - 2, x: 0 ).

Ki

By IR we mean the Euclidean space of dimension card(K) whose axes are

indexed by the elements of K1 . We identify KI with the set of vertices

of X L by associating j E K1 with the point (0, 0. , 1, 0, ...,0 ) C It
j

Let K a K 1 x x Kn A multi-matrix game is specified by payoffs: .

a E3K. ..., an 6 . For any k C K , a Is the payoff to I if the

n-tuple of pure strategies given by k are used. Given a , ..., an

we nov define the payoffs nl 1, ..., 1 on X X x ... x X as the
n n

expectation of the pure strategy payoffs. Let Z* - XC : I 2 < XJ

1 21 K I
< ix I !c 2 I.e., Z1  is an open set in I which contains the

JI

simplex X, Put Z aZlK*..Zn . For aEltK , define 11 : Z -R by

1a(x) - kiK lk

where xk denotes x( 1 ) .. l for k - (j(l), ...,J(n)) . Then

i K
if a C I is the payoff of I in the pure-strategy ame, I I restricted

a

to X gives his payoff In its 'mxed extension."

To apply Tbeorem I to this context it will suffice to check that

KD -{a :a CR I ) satisfies the T.C. condition for any a C Z . Put

L a K1 U ... U K, - (1, ...,k(n)) . Tor any J C L , let

KJ "'" K i- " x In " K *ere i is such that J C K .

(Since L is a disjoint union, this is well-defined.) Also for any

q - ((, 1), ),t(.+l), ... , &(a)) In K1 , denote the element

I

Ill I I--I.--- . I l i -i-III llIII II I*-
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(1(1), ... , i(i-l),j~i(i+l), ... , 1(n)) of I by (q,j) . With this nota-

tion, we see that 11. ( )o. ab a wer

for ,- (1, ... UL(-), e.a ),...,(61). Take my II .For each
J, I-..3(')there Is ,a li~ '

such that .)jc O because

; O0 for ;, I,...V4 Now consider the path , where:
JE~I

J ak + (tvj/aq(j)) if k - (q(j), J)
ak 1

ak  otherwise

Then - t (Dfl t)(z)) v . This shows that U satisfies T.C. at any

By Theorem 1 there is an open dense set V1  of ORK)n  such that

if (a , ... an) - a E V1  then (a) the NE. of Us a (R a 1.. an) are

finite in nmber, (b) if an N.E. of R1 is efficient, there is at least
a

one player who uses a pure strategy, (c) if an N.E. of %i is strong, then

at most one player's strategy is possibly not pure. To sharpen (c), let

V2 be the subset of Un given by

V2  ... , an) If either 1 0 ' or k k')

V2  Is open and dense in U . Moreover if z - (XI, ... , % ) C I is

an N.E. of Is for a C V2 , and if all but one of the players use pure

strategies at this U.I., then clearly so does the remaining player. Let

Vavl nv 2 . w have proved

Theorem 3.1: There is an open dens set V of Un  such that, if a C V ,

(a) the U.. of are finite in uiber,

(b) if an W.3. of A is efficient, then at least ome player uses a pure

strategly

(c) If an 33I. of laIs strong, then each player uses a pure strategy.
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4. An Example

We present the following example because it is particularly simple

and illustrates vith maximum clarity all of the features of the general

case.

Consider a game with two players where the strategy set of each

player is the interval 10,11 The payoff functions are then functions

on the square [0,13 x 10,I] , which we call X ; a point in X is de- r

noted by (x1, x2) where x is the jth player's strategy choice.

For each point P a (a,b) CR 2 , let up be the function

up(X,y) - (x-a)2 + (y-b)2Pq

i.e., u (x,y) is the square of the distance from (x,y) to P . Let

U be the set {up: P EIR 2 } of all such functions. Then U is a sub-

manifold of C2 i 2) and is isomorphic as a manifold to 112 itself.

We want to examine the Nash and efficient sets of the games where

each player's payoff function is selected from U . A game of this type

is determined by assigning a point P - (a,b) to player 1 and a point

Q - (c,d) to player 2, so that their payoff functions are respectively

Up and u We denote this game to be (P,Q)P Q
To find the Nash equilibria of the same (P,Q) , note that player

l's best response to any strategy choice of player 2 is the point in

(0,1 closest to a ; thus his best response Is a If a C [0,11 ,

0 is a < 0, and if a >l . Siuilarly player 2's best response to

any strategy choice of player 1 Is the point In [0,11 closest to d

.. . . . . . . ..., . . . .. ..



20

•Q - (cd)

(0,1) O( ,) In the figure on the left, the point

R is the Nash equilibrium of the

OP a (ab game (PQ) . In particular, ye

see that every game (P,Q) has a

(0,0) (1,0) unique Nash equilibrium.

To describe the efficient set of the Same (PQ) , denoted

by E(P.Q) , we need a definition. Given any closed convex set C it2 R

and a point M iR2  there is a unique closest point to N in C •

We denote this point by rc(M) and call it the retraction of N into C

Thus

distance(, r (N)) a sin(distance(N,P))C IEC

and rC  defines a continuous map of a 2 onto C such that rC(P) - P

If PE C.

Lewma 4.1: For all P. Q £ 2it , E(P,Q) is equal to the retraction

i~to X of the line sesment Joining P and Q . In other words, if

L(P,Q) is the line sement Joining P and Q , then E(P,Q) - r1,(L(P,Q))

Proof: We leave this as a simple exercise for the reader. Note that for

all x X , a point y is a pareto Iaprovemnt on x If y lies on

the perpendicular drawn from x to the line through P and Q

.. :
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Examples: (1) if P and Q both lie In X ,then E(PQ) Is L(P.Q)

(0,1)

N Q
(0,0)L_ -(1,0)

'ii) if P and Q lie outside of X , then E(P,Q) ay look like

the following (the bold line is E(P.Q) )

pP

7-6Y (1,o) (0,0) (1,0)

QI
In the examples (I) and (11), the point R is the unique Nash equilibrium

and In both cases It is Inefficient.

Leuma 4.2: Let R be the Nash equilibriumn of the itame (P,Q) where

P -(a,b) and Q (,d) . Then

(a) If R does not lie on the boundary of X (that Is, If neither player

Is on a vertex of his strategy set at R ),then R Is efficient

If and only If a - c and/or b - d *The Nash equilibria of nearby

games are generically Inefficient.
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(b) In the figure below, consider the three games (P,Q) , (P'. Q') ,

and (P", Q")w, ith Nash equilibria I , ' , and R" respectively.

In these three cases, the Nash equilibrium is efficient and the Nash

equilibria of all nearby gaes remain efficient. In all three cases,

at least one player Is at a vertex and in the game (P', Q') , the

efficient set is reduced to a point.

P Q Ps

Is Q1i

R R'

Poo.__f: This in easy to check using Lemma 4.1.

This exaple Illustrates the following main points of the geneal

theorem:

(1) Nah equilibria are finite In nmber and vry ontinuously In u•

(2) he efficient set Is contained n a union of subaifolds of odiension

at lseat I + N - n (qual to I In the above xaple).

(3) Efficient Nash quilibria t hich no player Is n a vertex of his

strategy set are not robust.

(4) Robust exmples of efficient Nash equilibria %here t least one player

Is on a vrtex of his strategy set exit.

Note that the submnifold of functions U satisfies condition T•C•, as

4,g

* S S%,

, . . .. ''" . ' . .. . . V. • -. - , ., • , .- : .. . :. "'-' , . ,. ,* '. l lal m ' l
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ip easily checked, and hence the above results are consequences of Theorem

2.4. Also, the same Same can be played in n-dimensions with n players

with similar results.

5. Varying Outcome Functions

Suppose now that utilities ul, ... , un  are defined on an outcome

space Y and that an outcome function X : - S1 ' ... x Sn - Y Is given,

so that the Jth player's payoff on a choice s- (l, ...' sn) C X of

strategies is uJ(#(5)) . In this section, we consider the question "to

what extent do the conclusions of Theorem 2.4 remain true in this setting?"

and try to give a qualitative answer. No attempt is made at covering a

"general case" and we therefore make some technical assumptions to simplify

matters.
Assume that each strategy set S is an open set in , V

is an open subqet of a , nd that the closures of the S and Y are

compact. Let U be the space of C2-functions defined on some fixed neigh-

borhood i of Y . We also fix a neighborhood i of X in aN , where

N- r1) , and let a be the set of smoothmsps from X to Y ob-
Jal

tained by restricting to X smooth maps from k to

The choice of a map C 2 and utilities (u, ... ,un) E Un

defines a Same. Let V (u) and E (u) the subsets of X of Nash and

efficient points respectively.

-l -1 I .. . . . . .. . . . . .- .. . ..
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Theorem 5.1: Assume that 24n.1 X* N snd suppose that the following inequality

holds:

(*) n-i ' N+M- 2

Then there is an open dense set £ fl such that: for all E £n o

there is an open dense Set U* C U such that

(I) N $(G) is finite for all , 4£ u *

(ii) E¢(u') fl N$(U) - for all uE U .

Remarks: (i) Inequality (*) is satisfied if n-I < i -

(ii) If M - N , inequality (*) becomesn-l< N - . or example, if

M - N > 2 and each strategy set has dimension at least two, it is satisfied.

Proof: For fixed E £ 1 , consider the map

D : n x X -Hat(n,N)

((u 1  'Un), x) 1+ (an nN matrix)

where the s are Cartesian coordinates on 3I, Let E' be the subset

of Mat(n,N) of matrices with dependent rows and let N' be the subset

of matrices of the form

r1) r(2) r(n)

n0

0 .. .... 0
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As in Section 2, if a point x E X lies in N (u) (reap. E (u) ) then

D(u,x) E N' (resp. E' ). By Lema 2.1, codim(N') - N and

codim(E' N') > N

For x C X , let d4x be the derivative of * at x , i.e.,

dox  F Os (X) where *((x1 , ...,xN)) * (41 (xl, ... ,xN), ...,*M(Xl, ...,x )).

a 7n A()]~j anx~marx.B
For E Un and y E Y , let A-y - (an n x M matrix). By

the chain rule:

*D (U,x) - A-( (x))d .

Conclusions (I) and (ii) of Theorem 5.1 hold if the map Df(ux) is trans-

verse to N' and E' n N' , as in Section 2. For fixed * , the open

dense set U c U satisfying (i) and (ii) exists if the map

D : Un x X - Mat(n,N)

is transverse. The first observation is that Dt is transverse if the

rank of d x is greater than or equal to n for all x E X . To prove
x

this, let B Z Mat(n,N) . It suffices to show that for all x C X andu- n and: -
-- . there is a path E Un  such that u 0 u and:

U 
t

It is clear that for all C C Mat(n,M) , there Is a path t such that

-0 - u  and fe<Aj (O(x)))j -C . Bence we suet see that if

rank(d# ) _ n , then there exists a C such that C-d#- . This Is

xx
obvious If ae consider , C and d r as linear saps and the equality
C-dox a 5 as the coninutativity of the diagram
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jjt n

d# x C

14

If the dimension of the Image of d#x  Is at least n , then C can be

chosen so that C-d x - B

To prove the theorem, it remains only to find conditions on M ,

N and n vhich guarantee the existence of an open dense set no a

such that for all # E no , rank(d~x) >.n for all x C X.

2
Lemma 5.2: Let f(s) - -a + (N4*)a - N(M-1) . For all integers

0 < a <M , there is an open dense set a - n such that for all * nf a

{x 6 X : rank(dex) = a) is a finite union of submanifolds of X of dimen-

sion f(a) (if f(a) < 0 , this is taken to mean that (x E X : rank(do x) a)x

is empty).

Before proving Lemma 5.2, ve show that it Implies Theorem 5.1. tat

a- 0 nn . We need only check that f(a) < 0 for a < n-t if the Inequality (C)
a (fn-l

of Theorem 5.1 is satisfied. Note that f(a) is increasing on the Inter-

val [0,M] and the smallest zero of f(a) lies in that interval. In

fact, the smallest zero Is equal to (N4I) - M)Y+4N and f(n-l)

is therefore negative if n satisfies (e).

Lemma 5.2 is also a consequence of the transversal density theorem.

Consider the map

A a X X - lat(M,N)

(x,) to d#x

V,
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We have seen, in the proof of Lema 2.1, that the set R of a M N

uatrIces of rank a (0 < a < 4) is a finite union of closed *ubnanifolds

of Hat(MN) of dimension aN + (H-a)a . Furthermore, A Is obviously

transverse and so there is an open dense set as a a such that A($,)

is transverse to Ra  for all *C go' (openness follows since the defini-

tion of Q Implies that all * R 1 are restrictions to X of maps defined

on a compact set containing X ). In particular, the codimension of

(4)-1 (Ra ) is equal to the codimension of Ra in Mat(M,N) . A short

calculation yields Lema 5.2.

Corollary 5.3: If H > n , there Is a .open (though not necessarily dense)

set $20 in n such that the conclusion of Theorem 5.1 holds for all

@£ 6 0 "

Proof: This follows from the above proof and the remark that the set

{ C S1 : rank(d$x ) >n for all x C X) is openAin (2.

What happens if N , H and n do not satisfy inequality (*) of

Theorem 5.1? Any one of the following conclusions my hold robustly, though

not generically, depending on the conditions placed on * : (a) the con-

clusion of Theorem 5.1, (b) all Nash equilibria are efficient (the case

¥ - (pt.} ), (W) the efficient Nash equilibria are a union of submanifolds

of the Nash set of codimension at least one.
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